I have a dataframe with multiple columns along with a date column. The date format is 12/31/15 and I have set it as a datetime object.
I set the datetime column as t
This is a split per year.
import pandas as pd
import dateutil.parser
dfile = 'rg_unificado.csv'
df = pd.read_csv(dfile, sep='|', quotechar='"', encoding='latin-1')
df['FECHA'] = df['FECHA'].apply(lambda x: dateutil.parser.parse(x))
#http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
#use to_period
per = df['FECHA'].dt.to_period("Y")
#group by that period
agg = df.groupby([per])
for year, group in agg:
#this simple save the data
datep = str(year).replace('-', '')
filename = '%s_%s.csv' % (dfile.replace('.csv', ''), datep)
group.to_csv(filename, sep='|', quotechar='"', encoding='latin-1', index=False, header=True)