I wrote a small function to partition my dataset into training and testing sets. However, I am running into trouble when dealing with factor variables. In the model valida
Try the caret package, particularly the function createDataPartition(). It should do exactly what you need, available on CRAN, homepage is here:
caret - data splitting
The function I mentioned is partially some code I found a while back on net, and then I modified it slightly to better handle edge cases (like when you ask for a sample size larger than the set, or a subset).
stratified <- function(df, group, size) {
# USE: * Specify your data frame and grouping variable (as column
# number) as the first two arguments.
# * Decide on your sample size. For a sample proportional to the
# population, enter "size" as a decimal. For an equal number
# of samples from each group, enter "size" as a whole number.
#
# Example 1: Sample 10% of each group from a data frame named "z",
# where the grouping variable is the fourth variable, use:
#
# > stratified(z, 4, .1)
#
# Example 2: Sample 5 observations from each group from a data frame
# named "z"; grouping variable is the third variable:
#
# > stratified(z, 3, 5)
#
require(sampling)
temp = df[order(df[group]),]
colsToReturn <- ncol(df)
#Don't want to attempt to sample more than possible
dfCounts <- table(df[group])
if (size > min(dfCounts)) {
size <- min(dfCounts)
}
if (size < 1) {
size = ceiling(table(temp[group]) * size)
} else if (size >= 1) {
size = rep(size, times=length(table(temp[group])))
}
strat = strata(temp, stratanames = names(temp[group]),
size = size, method = "srswor")
(dsample = getdata(temp, strat))
dsample <- dsample[order(dsample[1]),]
dsample <- data.frame(dsample[,1:colsToReturn], row.names=NULL)
return(dsample)
}