I have a dataframe(spark):
id value
3 0
3 1
3 0
4 1
4 0
4 0
I want to create a new dataframe:
3 0
One way is to use monotonically_increasing_id() and a self-join:
val data = Seq((3,0),(3,1),(3,0),(4,1),(4,0),(4,0)).toDF("id", "value")
data.show
+---+-----+
| id|value|
+---+-----+
| 3| 0|
| 3| 1|
| 3| 0|
| 4| 1|
| 4| 0|
| 4| 0|
+---+-----+
Now we generate a column named idx with an increasing Long:
val dataWithIndex = data.withColumn("idx", monotonically_increasing_id())
// dataWithIndex.cache()
Now we get the min(idx) for each id where value = 1:
val minIdx = dataWithIndex
.filter($"value" === 1)
.groupBy($"id")
.agg(min($"idx"))
.toDF("r_id", "min_idx")
Now we join the min(idx) back to the original DataFrame:
dataWithIndex.join(
minIdx,
($"r_id" === $"id") && ($"idx" <= $"min_idx")
).select($"id", $"value").show
+---+-----+
| id|value|
+---+-----+
| 3| 0|
| 3| 1|
| 4| 1|
+---+-----+
Note: monotonically_increasing_id() generates its value based on the partition of the row. This value may change each time dataWithIndex is re-evaluated. In my code above, because of lazy evaluation, it's only when I call the final show that monotonically_increasing_id() is evaluated.
If you want to force the value to stay the same, for example so you can use show to evaluate the above step-by-step, uncomment this line above:
// dataWithIndex.cache()