pandas value_counts applied to each column

前端 未结 6 992
甜味超标
甜味超标 2020-12-09 17:30

I have a dataframe with numerous columns (≈30) from an external source (csv file) but several of them have no value or always the same. Thus, I would to see qui

6条回答
  •  借酒劲吻你
    2020-12-09 17:37

    A nice way to do this and return a nicely formatter series is combining pandas.Series.value_counts and pandas.DataFrame.stack.

    For the DataFrame

    df = pandas.DataFrame(data=[[34, 'null', 'mark'], [22, 'null', 'mark'], [34, 'null', 'mark']], columns=['id', 'temp', 'name'], index=[1, 2, 3]) 
    

    You can do something like

    df.apply(lambda x: x.value_counts()).T.stack()
    

    In this code, df.apply(lambda x: x.value_counts()) applies value_counts to every column and appends it to the resulting DataFrame, so you end up with a DataFrame with the same columns and one row per every different value in every column (and a lot of null for each value that doesn't appear in each column).

    After that, T transposes the DataFrame (so you end up with a DataFrame with an index equal to the columns and the columns equal to the possible values), and stack turns the columns of the DataFrame into a new level of the MultiIndex and "deletes" all the Null values, making the whole thing a Series.

    The result of this is

    id    22      1
          34      2
    temp  null    3
    name  mark    3
    dtype: float64
    

提交回复
热议问题