Stratified sampling with pyspark

前端 未结 4 1265
误落风尘
误落风尘 2020-12-09 13:12

I have a Spark DataFrame that has one column that has lots of zeros and very few ones (only 0.01% of ones).

I\'d like to take a random

4条回答
  •  一向
    一向 (楼主)
    2020-12-09 13:44

    The solution I suggested in Stratified sampling in Spark is pretty straightforward to convert from Scala to Python (or even to Java - What's the easiest way to stratify a Spark Dataset ?).

    Nevertheless, I'll rewrite it python. Let's start first by creating a toy DataFrame :

    from pyspark.sql.functions import lit
    list = [(2147481832,23355149,1),(2147481832,973010692,1),(2147481832,2134870842,1),(2147481832,541023347,1),(2147481832,1682206630,1),(2147481832,1138211459,1),(2147481832,852202566,1),(2147481832,201375938,1),(2147481832,486538879,1),(2147481832,919187908,1),(214748183,919187908,1),(214748183,91187908,1)]
    df = spark.createDataFrame(list, ["x1","x2","x3"])
    df.show()
    # +----------+----------+---+
    # |        x1|        x2| x3|
    # +----------+----------+---+
    # |2147481832|  23355149|  1|
    # |2147481832| 973010692|  1|
    # |2147481832|2134870842|  1|
    # |2147481832| 541023347|  1|
    # |2147481832|1682206630|  1|
    # |2147481832|1138211459|  1|
    # |2147481832| 852202566|  1|
    # |2147481832| 201375938|  1|
    # |2147481832| 486538879|  1|
    # |2147481832| 919187908|  1|
    # | 214748183| 919187908|  1|
    # | 214748183|  91187908|  1|
    # +----------+----------+---+
    

    This DataFrame has 12 elements as you can see :

    df.count()
    # 12
    

    Distributed as followed :

    df.groupBy("x1").count().show()
    # +----------+-----+
    # |        x1|count|
    # +----------+-----+
    # |2147481832|   10|
    # | 214748183|    2|
    # +----------+-----+
    

    Now let's sample :

    First we'll set the seed :

    seed = 12
    

    The find the keys to fraction on and sample :

    fractions = df.select("x1").distinct().withColumn("fraction", lit(0.8)).rdd.collectAsMap()
    print(fractions)                                                            
    # {2147481832: 0.8, 214748183: 0.8}
    sampled_df = df.stat.sampleBy("x1", fractions, seed)
    sampled_df.show()
    # +----------+---------+---+
    # |        x1|       x2| x3|
    # +----------+---------+---+
    # |2147481832| 23355149|  1|
    # |2147481832|973010692|  1|
    # |2147481832|541023347|  1|
    # |2147481832|852202566|  1|
    # |2147481832|201375938|  1|
    # |2147481832|486538879|  1|
    # |2147481832|919187908|  1|
    # | 214748183|919187908|  1|
    # | 214748183| 91187908|  1|
    # +----------+---------+---+
    

    We can now check the content of our sample :

    sampled_df.count()
    # 9
    
    sampled_df.groupBy("x1").count().show()
    # +----------+-----+
    # |        x1|count|
    # +----------+-----+
    # |2147481832|    7|
    # | 214748183|    2|
    # +----------+-----+
    

提交回复
热议问题