Is there any predefined function in c++ to check whether the number is square of any number and same for the cube..
For identifying squares i tried this algorithm in java. With little syntax difference you can do it in c++ too. The logic is, the difference between every two consecutive perfect squares goes on increasing by 2. Diff(1,4)=3 , Diff(4,9)=5 , Diff(9,16)= 7 , Diff(16,25)= 9..... goes on. We can use this phenomenon to identify the perfect squares. Java code is,
boolean isSquare(int num){
int initdiff = 3;
int squarenum = 1;
boolean flag = false;
boolean square = false;
while(flag != true){
if(squarenum == num){
flag = true;
square = true;
}else{
square = false;
}
if(squarenum > num){
flag = true;
}
squarenum = squarenum + initdiff;
initdiff = initdiff + 2;
}
return square;
}
To make the identification of squares faster we can use another phenomenon, the recursive sum of digits of perfect squares is always 1,4,7 or 9. So a much faster code can be...
int recursiveSum(int num){
int sum = 0;
while(num != 0){
sum = sum + num%10;
num = num/10;
}
if(sum/10 != 0){
return recursiveSum(sum);
}
else{
return sum;
}
}
boolean isSquare(int num){
int initdiff = 3;
int squarenum = 1;
boolean flag = false;
boolean square = false;
while(flag != true){
if(squarenum == num){
flag = true;
square = true;
}else{
square = false;
}
if(squarenum > num){
flag = true;
}
squarenum = squarenum + initdiff;
initdiff = initdiff + 2;
}
return square;
}
boolean isCompleteSquare(int a){
// System.out.println(recursiveSum(a));
if(recursiveSum(a)==1 || recursiveSum(a)==4 || recursiveSum(a)==7 || recursiveSum(a)==9){
if(isSquare(a)){
return true;
}else{
return false;
}
}else{
return false;
}
}