Suppose I have a matrix composed of a list of lists like so:
>>> LoL=[list(range(10)) for i in range(10)]
>>> LoL
[[0, 1, 2, 3, 4, 5, 6, 7,
In [74]: [row[2:5] for row in LoL[1:4]]
Out[74]: [[2, 3, 4], [2, 3, 4], [2, 3, 4]]
You could also mimic NumPy's syntax by defining a subclass of list:
class LoL(list):
def __init__(self, *args):
list.__init__(self, *args)
def __getitem__(self, item):
try:
return list.__getitem__(self, item)
except TypeError:
rows, cols = item
return [row[cols] for row in self[rows]]
lol = LoL([list(range(10)) for i in range(10)])
print(lol[1:4, 2:5])
also yields
[[2, 3, 4], [2, 3, 4], [2, 3, 4]]
Using the LoL subclass won't win any speed tests:
In [85]: %timeit [row[2:5] for row in x[1:4]]
1000000 loops, best of 3: 538 ns per loop
In [82]: %timeit lol[1:4, 2:5]
100000 loops, best of 3: 3.07 us per loop
but speed isn't everything -- sometimes readability is more important.