I want to use numpy.polyfit for physical calculations, therefore I need the magnitude of the error.
As you can see in the documentation:
Returns
-------
p : ndarray, shape (M,) or (M, K)
Polynomial coefficients, highest power first.
If `y` was 2-D, the coefficients for `k`-th data set are in ``p[:,k]``.
residuals, rank, singular_values, rcond : present only if `full` = True
Residuals of the least-squares fit, the effective rank of the scaled
Vandermonde coefficient matrix, its singular values, and the specified
value of `rcond`. For more details, see `linalg.lstsq`.
Which means that if you can do a fit and get the residuals as:
import numpy as np
x = np.arange(10)
y = x**2 -3*x + np.random.random(10)
p, res, _, _, _ = numpy.polyfit(x, y, deg, full=True)
Then, the p are your fit parameters, and the res will be the residuals, as described above. The _'s are because you don't need to save the last three parameters, so you can just save them in the variable _ which you won't use. This is a convention and is not required.
@Jaime's answer explains what the residual means. Another thing you can do is look at those squared deviations as a function (the sum of which is res). This is particularly helpful to see a trend that didn't fit sufficiently. res can be large because of statistical noise, or possibly systematic poor fitting, for example:
x = np.arange(100)
y = 1000*np.sqrt(x) + x**2 - 10*x + 500*np.random.random(100) - 250
p = np.polyfit(x,y,2) # insufficient degree to include sqrt
yfit = np.polyval(p,x)
figure()
plot(x,y, label='data')
plot(x,yfit, label='fit')
plot(x,yfit-y, label='var')
So in the figure, note the bad fit near x = 0:
