How to extend `==` behavior to vectors that include NAs?

后端 未结 4 1788
我寻月下人不归
我寻月下人不归 2020-12-09 07:50

I\'ve completely failed at searching for other r-help or Stack Overflow discussion of this specific issue. Sorry if it\'s somewhere obvious. I believe that I\'m just lo

4条回答
  •  星月不相逢
    2020-12-09 08:44

    Assuming that we don't have a big relative number of NA, The proposed vectorized solution waste some ressources comparing values that have already been settled by a==b.

    We can usually assume that NAs are few so it makes it worth computing a==b first and then deal with the NAs separately, despite the additional steps and temp variables:

    `%==%` <- function(a,b){
      x <- a==b
      na_x <- which(is.na(x))
      x[na_x] <- is.na(a[na_x]) & is.na(b[na_x])
      x
    }
    

    Check output

    a <- c( 1 , 2 , 3 )
    b <- c( 1 , 2 , 4 )
    a %==% b
    # [1]  TRUE  TRUE FALSE
    
    a <- c( 1 , NA , 3 ) 
    b <- c( 1 , NA , 4 )
    a %==% b
    # [1]  TRUE  TRUE FALSE
    
    a <- c( 1 , NA , 3 ) 
    b <- c( 1 , 2 , 4 )
    a %==% b
    # [1]  TRUE FALSE FALSE
    

    Benchmarks

    I'm reproducing below @akrun's benchmark with fastest solutions only and n=100.

    set.seed(24)
    a <- sample(c(1:10, NA), 1e6, replace=TRUE)
    b <- sample(c(1:20, NA), 1e6, replace=TRUE)
    mm <- function(){
      x <- a==b
      na_x <- which(is.na(x))
      x[na_x] <- is.na(a[na_x]) & is.na(b[na_x])
      x
    }
    akrun1 <- function() {replace(a, is.na(a), Inf)==replace(b, is.na(b), Inf)}
    cathG <- function() {(!is.na(a) & !is.na(b) & a==b) | (is.na(a) & is.na(b))}
    docend <- function() {replace(a, which(is.na(a)), Inf)==replace(b, which(is.na(b)), Inf)}
    
    library(microbenchmark)
    microbenchmark(mm(),akrun1(),cathG(),docend(),
                   unit='relative', times=100L)
    
    # Unit: relative
    #     expr      min       lq     mean   median       uq       max neval
    #     mm() 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000   100
    # akrun1() 1.667242 1.884185 1.815392 1.642581 1.765238 0.9973017   100
    #  cathG() 2.447168 2.449597 2.118306 2.201346 2.358105 1.1421577   100
    # docend() 1.683817 1.950970 1.756481 1.745400 2.007889 1.2264461   100
    

    Extending ==

    As the original question is really to find :

    the easiest way to get R's == sign to never return NAs

    Here's a way, where we define a new class na_comparable. Only one of the vector needs to be of this class as the other will be coerced to it.

    na_comparable      <- setClass("na_comparable", contains = "numeric")
    `==.na_comparable` <- function(a,b){
      x <- unclass(a) == unclass(b) # inefficient but I don't know how to force the default `==`
      na_x <- which(is.na(x))
      x[na_x] <- is.na(a[na_x]) & is.na(b[na_x])
      x
    }
    
    `!=.na_comparable` <- Negate(`==.na_comparable`)
    
    a <- na_comparable(a)
    a == b
    # [1]  TRUE  TRUE FALSE
    b == a
    # [1]  TRUE  TRUE FALSE
    a != b
    # [1] FALSE FALSE  TRUE
    b != a
    # [1] FALSE FALSE  TRUE
    

    In a dplyr chain it could be conveniently used this way :

    data.frame(a=c(1,NA,3),b=c(1,NA,4)) %>%
      mutate(a = na_comparable(a),
             c = a==b,
             d= a!=b)
    
    #    a  b     c     d
    # 1  1  1  TRUE FALSE
    # 2 NA NA  TRUE FALSE
    # 3  3  4 FALSE  TRUE
    

    With this approach, in case you need to update code to account for NAs that were absent before, you might be set with a single na_comparable call instead of transforming your initial data or replacing all your == with %==% down the line.

提交回复
热议问题