I\'m aware of various discussions of limitations of the multiprocessing module when dealing with functions that are data members of a class (due to Pickling problems).
Steven Bethard has posted a way to allow methods to be pickled/unpickled. You could use it like this:
import multiprocessing as mp
import copy_reg
import types
def _pickle_method(method):
# Author: Steven Bethard
# http://bytes.com/topic/python/answers/552476-why-cant-you-pickle-instancemethods
func_name = method.im_func.__name__
obj = method.im_self
cls = method.im_class
cls_name = ''
if func_name.startswith('__') and not func_name.endswith('__'):
cls_name = cls.__name__.lstrip('_')
if cls_name:
func_name = '_' + cls_name + func_name
return _unpickle_method, (func_name, obj, cls)
def _unpickle_method(func_name, obj, cls):
# Author: Steven Bethard
# http://bytes.com/topic/python/answers/552476-why-cant-you-pickle-instancemethods
for cls in cls.mro():
try:
func = cls.__dict__[func_name]
except KeyError:
pass
else:
break
return func.__get__(obj, cls)
# This call to copy_reg.pickle allows you to pass methods as the first arg to
# mp.Pool methods. If you comment out this line, `pool.map(self.foo, ...)` results in
# PicklingError: Can't pickle : attribute lookup
# __builtin__.instancemethod failed
copy_reg.pickle(types.MethodType, _pickle_method, _unpickle_method)
class MyClass(object):
def __init__(self):
self.my_args = [1,2,3,4]
self.output = {}
def my_single_function(self, arg):
return arg**2
def my_parallelized_function(self):
# Use map or map_async to map my_single_function onto the
# list of self.my_args, and append the return values into
# self.output, using each arg in my_args as the key.
# The result should make self.output become
# {1:1, 2:4, 3:9, 4:16}
self.output = dict(zip(self.my_args,
pool.map(self.my_single_function, self.my_args)))
Then
pool = mp.Pool()
foo = MyClass()
foo.my_parallelized_function()
yields
print foo.output
# {1: 1, 2: 4, 3: 9, 4: 16}