I want to improve a collision system.
Right now I detect if 2 irregular objects collide if their bounding rectangles collide.
I want to obtain the for recta
if a circle and an ellipse collide, then either their boundaries intersect 1, 2, 3, or 4 times(or infinitely many in the case of a circular ellipse that coincides with the circle), or the circle is within the ellipse or vice versa.
I'm assuming the circle has an equation of (x - a)^2 + (y - b)^2 <= r^2 (1) and the ellipse has an equation of [(x - c)^2]/[d^2] + [(y - e)^2]/[f^2] <= 1 (2)
To check whether one of them is inside the other, you can evaluate the equation of the circle at the coordinates of the center of the ellipse(x=c, y=e), or vice versa, and see if the inequality holds.
to check the other cases in which their boundaries intersect, you have to check whether the system of equations described by (1) and (2) has any solutions.
you can do this by adding (1) and (2), giving you
(x - a)^2 + (y - b)^2 + [(x - c)^2]/[d^2] + [(y - e)^2]/[f^2] = r^2 + 1
next you multiply out the terms, giving
x^2 - 2ax + a^2 + y^2 - 2by + b^2 + x^2/d^2 - 2cx/d^2 + c^2/d^2 + y^2/f^2 - 2ey/f^2 + e^2/f^2 = r^2 + 1
collecting like terms, we get
(1 + 1/d^2)x^2 - (2a + 2c/d^2)x + (1 + 1/f^2)y^2 - (2b + 2e/f^2)y = 1 + r^2 - a^2 - b^2 - c^2/d^2 - e^2/f^2
now let m = (1 + 1/d^2), n = -(2a + 2c/d^2), o = (1 + 1/f^2), and p = -(2b + 2e/f^2)
the equation is now mx^2 + nx + oy^2 + py = 1 + r^2 - a^2 - b^2 - c^2/d^2 - e^2/f^2
now we need to complete the squares on the left hand side
m[x^2 + (n/m)x] + o[y^2 + (p/o)y] = 1 + r^2 - a^2 - b^2 - c^2/d^2 - e^2/f^2
m[x^2 + (n/m)x + (n/2m)^2 - (n/2m)^2] + o[y^2 + (p/o)y + (p/2o)^2 - (p/2o)^2] = 1 + r^2 - a^2 - b^2 - c^2/d^2 - e^2/f^2
m[(x + n/2m)^2 - (n/2m)^2] + o[(y + p/2o)^2 - (p/2o)^2] = 1 + r^2 - a^2 - b^2 - c^2/d^2 - e^2/f^2
m(x + n/2m)^2 - m(n/2m)^2 + o(y + p/2o)^2 - o(p/2o)^2 = 1 + r^2 - a^2 - b^2 - c^2/d^2 - e^2/f^2
m(x + n/2m)^2 + o(y + p/2o)^2 = 1 + r^2 - a^2 - b^2 - c^2/d^2 - e^2/f^2 + m(n/2m)^2 + o(p/2o)^2
this system has a solution iff 11 + r^2 - a^2 - b^2 - c^2/d^2 - e^2/f^2 + m(n/2m)^2 + o(p/2o)^2 >= 0
There you have it, if I didn't make any algebraic mistakes. I don't know how much you can simplify the resulting expression, so this solution might be quite computationally expensive if you're going to check for many circles/ellipses