Checking if particular value (in cell) is NaN in pandas DataFrame not working using ix or iloc

后端 未结 3 1929
长情又很酷
长情又很酷 2020-12-09 01:13

Lets say I have following pandas DataFrame:

import pandas as pd
df = pd.DataFrame({\"A\":[1,pd.np.nan,2], \"B\":[5,6,0]})
         


        
3条回答
  •  情深已故
    2020-12-09 01:53

    pd.isna(cell_value) can be used to check if a given cell value is nan. Alternatively, pd.notna(cell_value) to check the opposite.

    From source code of pandas:

    def isna(obj):
        """
        Detect missing values for an array-like object.
    
        This function takes a scalar or array-like object and indicates
        whether values are missing (``NaN`` in numeric arrays, ``None`` or ``NaN``
        in object arrays, ``NaT`` in datetimelike).
    
        Parameters
        ----------
        obj : scalar or array-like
            Object to check for null or missing values.
    
        Returns
        -------
        bool or array-like of bool
            For scalar input, returns a scalar boolean.
            For array input, returns an array of boolean indicating whether each
            corresponding element is missing.
    
        See Also
        --------
        notna : Boolean inverse of pandas.isna.
        Series.isna : Detect missing values in a Series.
        DataFrame.isna : Detect missing values in a DataFrame.
        Index.isna : Detect missing values in an Index.
    
        Examples
        --------
        Scalar arguments (including strings) result in a scalar boolean.
    
        >>> pd.isna('dog')
        False
    
        >>> pd.isna(np.nan)
        True
    

提交回复
热议问题