I\'m trying to fuzzy match two csv files, each containing one column of names, that are similar but not the same.
My code so far is as follows:
impor
I just wrote the same thing for myself but in pandas....
import pandas as pd
import numpy as np
from fuzzywuzzy import fuzz
from fuzzywuzzy import process
d1={1:'Tim','2':'Ted',3:'Sally',4:'Dick',5:'Ethel'}
d2={1:'Tam','2':'Tid',3:'Sally',4:'Dicky',5:'Aardvark'}
df1=pd.DataFrame.from_dict(d1,orient='index')
df2=pd.DataFrame.from_dict(d2,orient='index')
df1.columns=['Name']
df2.columns=['Name']
def match(Col1,Col2):
overall=[]
for n in Col1:
result=[(fuzz.partial_ratio(n, n2),n2)
for n2 in Col2 if fuzz.partial_ratio(n, n2)>50
]
if len(result):
result.sort()
print('result {}'.format(result))
print("Best M={}".format(result[-1][1]))
overall.append(result[-1][1])
else:
overall.append(" ")
return overall
print(match(df1.Name,df2.Name))
I have used a threshold of 50 in this - but it is configurable.
Dataframe1 looks like
Name
1 Tim
2 Ted
3 Sally
4 Dick
5 Ethel
And Dataframe2 looks like
Name
1 Tam
2 Tid
3 Sally
4 Dicky
5 Aardvark
So running it produces the matches of
['Tid', 'Tid', 'Sally', 'Dicky', ' ']
Hope this helps.