I\'ve tried a bunch of different Tensorflow examples, which works fine on the CPU but generates the same error when I\'m trying to run them on the GPU. One little example is
This can happen because your TensorFlow session is not able to get sufficient amount of memory in the GPU. Maybe you have a low amount of free memory for other processes like TensorFlow or there is another TensorFlow session running in your system . so you have to configure the amount of memory the TensorFlow session will use
if you are using TensorFlow 1.x
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
as Tensorflow 2.x has undergone major changes from 1.x.if you want to use TensorFlow 1.x versions method/function there is a compatibility module kept in TensorFlow 2.x. So TensorFlow 2.x user can use this piece of code
gpu_options = tf.compat.v1.GPUOptions(per_process_gpu_memory_fraction=0.333)
sess = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(gpu_options=gpu_options))