I have a class with two class methods (using the classmethod() function) for getting and setting what is essentially a static variable. I tried to use the property() functi
Is it possible to use the property() function with classmethod decorated functions?
No.
However, a classmethod is simply a bound method (a partial function) on a class accessible from instances of that class.
Since the instance is a function of the class and you can derive the class from the instance, you can can get whatever desired behavior you might want from a class-property with property:
class Example(object):
_class_property = None
@property
def class_property(self):
return self._class_property
@class_property.setter
def class_property(self, value):
type(self)._class_property = value
@class_property.deleter
def class_property(self):
del type(self)._class_property
This code can be used to test - it should pass without raising any errors:
ex1 = Example()
ex2 = Example()
ex1.class_property = None
ex2.class_property = 'Example'
assert ex1.class_property is ex2.class_property
del ex2.class_property
assert not hasattr(ex1, 'class_property')
And note that we didn't need metaclasses at all - and you don't directly access a metaclass through its classes' instances anyways.
@classproperty decoratorYou can actually create a classproperty decorator in just a few lines of code by subclassing property (it's implemented in C, but you can see equivalent Python here):
class classproperty(property):
def __get__(self, obj, objtype=None):
return super(classproperty, self).__get__(objtype)
def __set__(self, obj, value):
super(classproperty, self).__set__(type(obj), value)
def __delete__(self, obj):
super(classproperty, self).__delete__(type(obj))
Then treat the decorator as if it were a classmethod combined with property:
class Foo(object):
_bar = 5
@classproperty
def bar(cls):
"""this is the bar attribute - each subclass of Foo gets its own.
Lookups should follow the method resolution order.
"""
return cls._bar
@bar.setter
def bar(cls, value):
cls._bar = value
@bar.deleter
def bar(cls):
del cls._bar
And this code should work without errors:
def main():
f = Foo()
print(f.bar)
f.bar = 4
print(f.bar)
del f.bar
try:
f.bar
except AttributeError:
pass
else:
raise RuntimeError('f.bar must have worked - inconceivable!')
help(f) # includes the Foo.bar help.
f.bar = 5
class Bar(Foo):
"a subclass of Foo, nothing more"
help(Bar) # includes the Foo.bar help!
b = Bar()
b.bar = 'baz'
print(b.bar) # prints baz
del b.bar
print(b.bar) # prints 5 - looked up from Foo!
if __name__ == '__main__':
main()
But I'm not sure how well-advised this would be. An old mailing list article suggests it shouldn't work.
The downside of the above is that the "class property" isn't accessible from the class, because it would simply overwrite the data descriptor from the class __dict__.
However, we can override this with a property defined in the metaclass __dict__. For example:
class MetaWithFooClassProperty(type):
@property
def foo(cls):
"""The foo property is a function of the class -
in this case, the trivial case of the identity function.
"""
return cls
And then a class instance of the metaclass could have a property that accesses the class's property using the principle already demonstrated in the prior sections:
class FooClassProperty(metaclass=MetaWithFooClassProperty):
@property
def foo(self):
"""access the class's property"""
return type(self).foo
And now we see both the instance
>>> FooClassProperty().foo
and the class
>>> FooClassProperty.foo
have access to the class property.