Any clever ideas on how to generate random coordinates (latitude / longitude) of places on Earth? Latitude / Longitude. Precision to 5 points and avoid bodies of water. <
This is an extremely interesting question, from both a theoretical and practical perspective. The most suitable solution will largely depend on your exact requirements. Do you need to account for every body of water, or just the major seas and oceans? How critical are accuracy and correctness; Will identifying sea as land or vice-versa be a catastrophic failure?
I think machine learning techniques would be an excellent solution to this problem, provided that you don't mind the (hopefully small) probability that a point of water is incorrectly classified as land. If that's not an issue, then this approach should have a number of advantages against other techniques.
Using a bitmap is a nice solution, simple and elegant. It can be produced to a specified accuracy and the classification is guaranteed to be correct (Or a least as correct as you made the bitmap). But its practicality is dependent on how accurate you need the solution to be. You mention that you want the coordinate accuracy to 5 decimal places (which would be equivalent to mapping the whole surface of the planet to about the nearest metre). Using 1 bit per element, the bitmap would weigh in at ~73.6 terabytes!
We don't need to store all of this data though; We only need to know where the coastlines are. Just by knowing where a point is in relation to the coast, we can determine whether it is on land or sea. As a rough estimate, the CIA world factbook reports that there are 22498km of coastline on Earth. If we were to store coordiates for every metre of coastline, using a 32 bit word for each latitude and longitude, this would take less than 1.35GB to store. It's still a lot if this is for a trivial application, but a few orders of magnitude less than using a bitmap. If having such a high degree of accuracy isn't neccessary though, these numbers would drop considerably. Reducing the mapping to only the nearest kilometre would make the bitmap just ~75GB and the coordinates for the world's coastline could fit on a floppy disk.
What I propose is to use a clustering algorithm to decide whether a point is on land or not. We would first need a suitably large number of coordinates that we already know to be on either land or sea. Existing GIS databases would be suitable for this. Then we can analyse the points to determine clusters of land and sea. The decision boundary between the clusters should fall on the coastlines, and all points not determining the decision boundary can be removed. This process can be iterated to give a progressively more accurate boundary.
Only the points determining the decision boundary/the coastline need to be stored, and by using a simple distance metric we can quickly and easily decide if a set of coordinates are on land or sea. A large amount of resources would be required to train the system, but once complete the classifier would require very little space or time.