Most operations in pandas
can be accomplished with operator chaining (groupby
, aggregate
, apply
, etc), but the only way I
If you would like to apply all of the common boolean masks as well as a general purpose mask you can chuck the following in a file and then simply assign them all as follows:
pd.DataFrame = apply_masks()
Usage:
A = pd.DataFrame(np.random.randn(4, 4), columns=["A", "B", "C", "D"])
A.le_mask("A", 0.7).ge_mask("B", 0.2)... (May be repeated as necessary
It's a little bit hacky but it can make things a little bit cleaner if you're continuously chopping and changing datasets according to filters. There's also a general purpose filter adapted from Daniel Velkov above in the gen_mask function which you can use with lambda functions or otherwise if desired.
File to be saved (I use masks.py):
import pandas as pd
def eq_mask(df, key, value):
return df[df[key] == value]
def ge_mask(df, key, value):
return df[df[key] >= value]
def gt_mask(df, key, value):
return df[df[key] > value]
def le_mask(df, key, value):
return df[df[key] <= value]
def lt_mask(df, key, value):
return df[df[key] < value]
def ne_mask(df, key, value):
return df[df[key] != value]
def gen_mask(df, f):
return df[f(df)]
def apply_masks():
pd.DataFrame.eq_mask = eq_mask
pd.DataFrame.ge_mask = ge_mask
pd.DataFrame.gt_mask = gt_mask
pd.DataFrame.le_mask = le_mask
pd.DataFrame.lt_mask = lt_mask
pd.DataFrame.ne_mask = ne_mask
pd.DataFrame.gen_mask = gen_mask
return pd.DataFrame
if __name__ == '__main__':
pass