I\'m trying to verify my camera calibration, so I\'d like to rectify the calibration images. I expect that this will involve using a call to warpPerspective bu
This is a sketch of what I mean by "solving the system of equations" (in Python):
import cv2
import scipy # I use scipy by habit; numpy would be fine too
#rvec= the rotation vector
#tvec = the translation *emphasized text*matrix
#A = the camera intrinsic
def unit_vector(v):
return v/scipy.sqrt(scipy.sum(v*v))
(fx,fy)=(A[0,0], A[1,1])
Ainv=scipy.array( [ [1.0/fx, 0.0, -A[0,2]/fx],
[ 0.0, 1.0/fy, -A[1,2]/fy],
[ 0.0, 0.0, 1.0] ], dtype=scipy.float32 )
R=cv2.Rodrigues( rvec )
Rinv=scipy.transpose( R )
u=scipy.dot( Rinv, tvec ) # displacement between camera and world coordinate origin, in world coordinates
# corners of the image, for here hard coded
pixel_corners=[ scipy.array( c, dtype=scipy.float32 ) for c in [ (0+0.5,0+0.5,1), (0+0.5,640-0.5,1), (480-0.5,640-0.5,1), (480-0.5,0+0.5,1)] ]
scene_corners=[]
for c in pixel_corners:
lhat=scipy.dot( Rinv, scipy.dot( Ainv, c) ) #direction of the ray that the corner images, in world coordinates
s=u[2]/lhat[2]
# now we have the case that (s*lhat-u)[2]==0,
# i.e. s is how far along the line of sight that we need
# to move to get to the Z==0 plane.
g=s*lhat-u
scene_corners.append( (g[0], g[1]) )
# now we have: 4 pixel_corners (image coordinates), and 4 corresponding scene_coordinates
# can call cv2.getPerspectiveTransform on them and so on..