The (brief) documentation for scipy.integrate.ode says that two methods (dopri5 and dop853) have stepsize control and dense output. L
Here's another option that should also work with dopri5 and dop853. Basically, the solver will call the logistic() function as often as needed to calculate intermediate values so that's where we store the results:
import numpy as np
from scipy.integrate import ode
import matplotlib.pyplot as plt
sol = []
def logistic(t, y, r):
sol.append([t, y])
return r * y * (1.0 - y)
r = .01
t0 = 0
y0 = 1e-5
t1 = 5000.0
# Maximum number of steps that the integrator is allowed
# to do along the whole interval [t0, t1].
N = 10000
#backend = 'vode'
backend = 'dopri5'
#backend = 'dop853'
solver = ode(logistic).set_integrator(backend, nsteps=N)
solver.set_initial_value(y0, t0).set_f_params(r)
# Single call to solver.integrate()
solver.integrate(t1)
sol = np.array(sol)
plt.plot(sol[:,0], sol[:,1], 'b.-')
plt.show()