We know that any numbers that are not equal to 0 are viewed as true in C, so we can write:
int a = 16;
while (a--)
printf(\"%d
This answer needs to be looked at a bit more closely.
The actual definition in C++ is that anything not 0 is treated as true. Why is this relevant? Because C++ doesn't know what an integer is by how we think about it--we create that meaning, all it holds is the shell and rules for what that means. It knows what bits are though, that which make up an integer.
1 as an integer is loosely represented in bits, say an 8-bit signed int as 0000 0001. Many times what we see visually is a bit of a lie, -1 is a much more common way to represent it because of the signed nature of 'integer'. 1 really can't mean true proper, why? Because it's NOT operation is 1111 1110. That's a really major issue for a boolean. When we talk about a boolean, it's just 1 bit--it's really simple, 0 is false and 1 is true. All the logic operations hold as trivial. This is why '-1' should be designated as 'true' for integers (signed). 1111 1111 NOT'ed becomes 0000 0000---the logic holds and we're good. Unsigned ints is a little bit tricky and were a lot more commonly used in the past--where 1 means true because it's easy to imply the logic that 'anything not 0 is true'.
That's the explanation. I say the accepted answer here is wrong--there is no clear definition in the C/C++ definition. A boolean is a boolean, you can treat an integer as a boolean, but the fact the output is an integer says nothing about the operation actually being done is bitwise.