I have an big array of length N, let\'s say something like:
2 4 6 7 6 3 3 3 4 3 4 4 4 3 3 1
I need to split this array into P subarrays (in
@Gumbo 's answer is clear and actionable, but consumes lots of time when length(A) bigger than 400 and P bigger than 8. This is because that algorithm is kind of brute-forcing with benefits as he said.
In fact, a very fast solution is using dynamic programming.
Given an array A of positive integers and a positive integer P, separate the array A into P non-overlapping subarrays such that the difference between the sum of each subarray and the perfect sum of the subarrays (sum(A)/P) is minimal.
Measure:
, where
is sum of elements of subarray
,
is the average of P subarray' sums.
This can make sure the balance of sum, because it use the definition of Standard Deviation.
Persuming that array A has N elements; Q(i,j) means the minimum Measure value when split the last i elements of A into j subarrays. D(i,j) means (sum(B)-sum(A)/P)^2
when array B consists of the i~jth elements of A ( 0<=i<=j
The minimum measure of the question is to calculate Q(N,P). And we find that:
Q(N,P)=MIN{Q(N-1,P-1)+D(0,0); Q(N-2,P-1)+D(0,1); ...; Q(N-1,P-1)+D(0,N-P)}
So it like can be solved by dynamic programming.
Q(i,1) = D(N-i,N-1)
Q(i,j) = MIN{ Q(i-1,j-1)+D(N-i,N-i);
Q(i-2,j-1)+D(N-i,N-i+1);
...;
Q(j-1,j-1)+D(N-i,N-j)}
So the algorithm step is:
1. Cal j=1:
Q(1,1), Q(2,1)... Q(3,1)
2. Cal j=2:
Q(2,2) = MIN{Q(1,1)+D(N-2,N-2)};
Q(3,2) = MIN{Q(2,1)+D(N-3,N-3); Q(1,1)+D(N-3,N-2)}
Q(4,2) = MIN{Q(3,1)+D(N-4,N-4); Q(2,1)+D(N-4,N-3); Q(1,1)+D(N-4,N-2)}
... Cal j=...
P. Cal j=P:
Q(P,P), Q(P+1,P)...Q(N,P)
The final minimum Measure value is stored as Q(N,P)!
To trace each subarray's length, you can store the
MIN choice when calculate Q(i,j)=MIN{Q+D...}
space for D(i,j);
time for calculate Q(N,P)
compared to the pure brute-forcing algorithm consumes
time.