I\'ve been trying to fit an exponential to some data for a while using scipy.optimize.curve_fit but i\'m having real difficulty. I really can\'t see any reason why this woul
Numerical algorithms tend to work better when not fed extremely small (or large) numbers.
In this case, the graph shows your data has extremely small x and y values. If you scale them, the fit is remarkable better:
xData = np.load('xData.npy')*10**5
yData = np.load('yData.npy')*10**5
from __future__ import division
import os
os.chdir(os.path.expanduser('~/tmp'))
import numpy as np
import scipy.optimize as optimize
import matplotlib.pyplot as plt
def func(x,a,b,c):
return a*np.exp(-b*x)-c
xData = np.load('xData.npy')*10**5
yData = np.load('yData.npy')*10**5
print(xData.min(), xData.max())
print(yData.min(), yData.max())
trialX = np.linspace(xData[0], xData[-1], 1000)
# Fit a polynomial
fitted = np.polyfit(xData, yData, 10)[::-1]
y = np.zeros(len(trialX))
for i in range(len(fitted)):
y += fitted[i]*trialX**i
# Fit an exponential
popt, pcov = optimize.curve_fit(func, xData, yData)
print(popt)
yEXP = func(trialX, *popt)
plt.figure()
plt.plot(xData, yData, label='Data', marker='o')
plt.plot(trialX, yEXP, 'r-',ls='--', label="Exp Fit")
plt.plot(trialX, y, label = '10 Deg Poly')
plt.legend()
plt.show()

Note that after rescaling xData and yData, the parameters returned by curve_fit must also be rescaled. In this case, a, b and c each must be divided by 10**5 to obtain fitted parameters for the original data.
One objection you might have to the above is that the scaling has to be chosen rather "carefully". (Read: Not every reasonable choice of scale works!)
You can improve the robustness of curve_fit by providing a reasonable initial guess for the parameters. Usually you have some a priori knowledge about the data which can motivate ballpark / back-of-the envelope type guesses for reasonable parameter values.
For example, calling curve_fit with
guess = (-1, 0.1, 0)
popt, pcov = optimize.curve_fit(func, xData, yData, guess)
helps improve the range of scales on which curve_fit succeeds in this case.