I want to pass the B int array pointer into func function and be able to change it from there and then view the changes in main function
#include
If you actually want to pass an array pointer, it's
#include
void func(int (*B)[10]){ // ptr to array of 10 ints.
(*B)[0] = 5; // note, *B[0] means *(B[0])
//B[0][0] = 5; // same, but could be misleading here; see below.
}
int main(void){
int B[10] = {0}; // not NULL, which is for pointers.
printf("b[0] = %d\n\n", B[0]);
func(&B); // &B is ptr to arry of 10 ints.
printf("b[0] = %d\n\n", B[0]);
return 0;
}
But as mentioned in other answers, it's not that common to do this. Usually a pointer-to-array is passed only when you want to pass a 2d array, where it suddenly looks a lot clearer, as below. A 2D array is actually passed as a pointer to its first row.
void func( int B[5][10] ) // this func is actually the same as the one above!
{
B[0][0] = 5;
}
int main(void){
int Ar2D[5][10];
func(Ar2D); // same as func( &Ar2D[0] )
}
The parameter of func may be declared as int B[5][10]
, int B[][10]
, int (*B)[10]
, all are equivalent as parameter types.
Addendum: you can return a pointer-to-array from a function, but the syntax to declare the function is very awkward, the [10] part of the type has to go after the parameter list:
int MyArr[5][10];
int MyRow[10];
int (*select_myarr_row( int i ))[10] { // yes, really
return (i>=0 && i<5)? &MyArr[i] : &MyRow;
}
This is usually done as below, to avoid eyestrain:
typedef int (*pa10int)[10];
pa10int select_myarr_row( int i ) {
return (i>=0 && i<5)? &MyArr[i] : &MyRow;
}