A proper benchmark or how the number may lie
Following the argument about Math.ceil(value/10d) and (value+9)/10 I ended up coding a proper non-dead code, non-interpret mode benchmark.
I've been telling that writing micro benchmark is not an easy task. The code below illustrates this:
00:21:40.109 starting up....
00:21:40.140 doubleCeil: 19444599
00:21:40.140 integerCeil: 19444599
00:21:40.140 warming up...
00:21:44.375 warmup doubleCeil: 194445990000
00:21:44.625 warmup integerCeil: 194445990000
00:22:27.437 exec doubleCeil: 1944459900000, elapsed: 42.806s
00:22:29.796 exec integerCeil: 1944459900000, elapsed: 2.363s
The benchmark is in Java since I know well how Hotspot optimizes and ensures it's a fair result. With such results, no statistics, noise or anything can taint it.
Integer ceil is insanely much faster.
The code
package t1;
import java.math.BigDecimal;
import java.util.Random;
public class Div {
static int[] vals;
static long doubleCeil(){
int[] v= vals;
long sum = 0;
for (int i=0;i0?String.format(msg, params):msg;
System.out.printf("%tH:%