I have a program with a function which takes a pointer as arg, and a main. The main is creating n threads, each of them running the function on different me
It can easily be achieved using a barrier (just a convenience wrapper over a conditional variable and a counter). It basically blocks until all N threads have reached the "barrier". It then "recycles" again. Boost provides an implementation.
void myfunc(void * p, boost::barrier& start_barrier, boost::barrier& end_barrier) {
while (!stop_condition) // You'll need to tell them to stop somehow
{
start_barrier.wait ();
do_something(p);
end_barrier.wait ();
}
}
int main(){
void * myp[n_threads] {a_location, another_location,...};
boost::barrier start_barrier (n_threads + 1); // child threads + main thread
boost::barrier end_barrier (n_threads + 1); // child threads + main thread
std::thread mythread[n_threads];
for (unsigned int i=0; i < n_threads; i++) {
mythread[i] = std::thread(myfunc, myp[i], start_barrier, end_barrier);
}
start_barrier.wait (); // first unblock the threads
for (unsigned long int j=0; j < ULONG_MAX; j++) {
end_barrier.wait (); // mix_data must not execute before the threads are done
mix_data(myp);
start_barrier.wait (); // threads must not start new iteration before mix_data is done
}
return 0;
}