I have an integer array with some finite number of values. My job is to find the minimum difference between any two elements in the array.
Consider that the array co
While all the answers are correct, I wanted to show the underlying algorithm responsible for n log n run time. The divide and conquer way of finding the minimum distance between the two points or finding the closest points in a 1-D plane.
The general algorithm:
Here is a sample I created in Javascript:
// Points in 1-D
var points = [4, 9, 1, 32, 13];
var smallestDiff;
function mergeSort(arr) {
if (arr.length == 1)
return arr;
if (arr.length > 1) {
let breakpoint = Math.ceil((arr.length / 2));
// Left list starts with 0, breakpoint-1
let leftList = arr.slice(0, breakpoint);
// Right list starts with breakpoint, length-1
let rightList = arr.slice(breakpoint, arr.length);
// Make a recursive call
leftList = mergeSort(leftList);
rightList = mergeSort(rightList);
var a = merge(leftList, rightList);
return a;
}
}
function merge(leftList, rightList) {
let result = [];
while (leftList.length && rightList.length) {
// Sorting the x coordinates
if (leftList[0] <= rightList[0]) {
result.push(leftList.shift());
} else {
result.push(rightList.shift());
}
}
while (leftList.length)
result.push(leftList.shift());
while (rightList.length)
result.push(rightList.shift());
let diff;
if (result.length > 1) {
diff = result[1] - result[0];
} else {
diff = result[0];
}
if (smallestDiff) {
if (diff < smallestDiff)
smallestDiff = diff;
} else {
smallestDiff = diff;
}
return result;
}
mergeSort(points);
console.log(`Smallest difference: ${smallestDiff}`);