I want to plot the output of this simple neural network:
model.compile(loss=\'binary_crossentropy\', optimizer=\'adam\', metrics=[\'accuracy\']) history = m
Validate the model on the test data as shown below and then plot the accuracy and loss
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) history = model.fit(X_train, y_train, nb_epoch=10, validation_data=(X_test, y_test), shuffle=True)