I wrote the following script:
import numpy
d = numpy.array([[1089, 1093]])
e = numpy.array([[1000, 4443]])
answer = numpy.exp(-3 * d)
answer1 = numpy.exp(-3
You can use np.logaddexp (which implements the idea in @gg349's answer):
In [33]: d = np.array([[1089, 1093]])
In [34]: e = np.array([[1000, 4443]])
In [35]: log_res = np.logaddexp(-3*d[0,0], -3*d[0,1]) - np.logaddexp(-3*e[0,0], -3*e[0,1])
In [36]: log_res
Out[36]: -266.99999385580668
In [37]: res = exp(log_res)
In [38]: res
Out[38]: 1.1050349147204485e-116
Or you can use scipy.special.logsumexp:
In [52]: from scipy.special import logsumexp
In [53]: res = np.exp(logsumexp(-3*d) - logsumexp(-3*e))
In [54]: res
Out[54]: 1.1050349147204485e-116