This is more of a algorithmic question. I have a page which using javaScript displays items and items relationship to other item by drawing arrow connection from source to t
A pretty nice class of algorithms for laying out graphs are simulation-based algorithms. In those algorithms, you model your graph as if it was a physical object with physical properties.
In this case imagine the nodes of the graph are balls that repel each other, while the edges are springs or rubbers that keep the graph together. The repelling force is stronger the closer the nodes are to each other e.g. inverse square of their distance, and the tension force of each spring is proportional to its length. The repelling force will cause the nodes to get as far as possible from the other nodes and the graph will untie. Of course, you'll have to experiment with coefficients a little to get the best results (but I guarantee - it is a lot of fun).
The main pros of this approach are:
The downsides of this approach are:
A similar method can be used to layout/untie knots.
You can see how this code works here. Refresh the page to get different graphs. Of course, sometimes it doesn't find the global minimum and there are more crossing edges than it is possible - so if the results don't satisfy you, you can add random shaking.
This problem is similar to routing problem in design of PCBs. If you're not satisfied with the simple and easy solution provided by Approach 1, you can improve the solution by using autorouting methods. E.g. you can put your nodes on a grid and then use A* algorithm to find the shortest paths connecting them.
The above algorithm is a greedy heuristic and unfortunately it doesn't guarantee the optimal solution, because the result depends on the order of routing the edges. You can further improve the solution by removng a random edge that crosses another edge and reroute it.
Step 1. is optional to make the graph layout more regular and make the average connection distance small, however it should not affect the number of intersections (if the grid has enough resolution).