A friend was in need of an algorithm that would let him loop through the elements of an NxM matrix (N and M are odd). I came up with a solution, but I wanted to see if my fe
Davidont's excellent solution in VB.Net
Public Function Spiral(n As Integer) As RowCol
' given n an index in the squared spiral
' p the sum of point in inner square
' a the position on the current square
' n = p + a
' starts with row 0 col -1
Dim r As Integer = CInt(Math.Floor((Math.Sqrt(n + 1) - 1) / 2) + 1)
' compute radius : inverse arithmetic sum of 8+16+24+...=
Dim p As Integer = (8 * r * (r - 1)) \ 2
' compute total point on radius -1 : arithmetic sum of 8+16+24+...
Dim en As Integer = r * 2
' points by face
Dim a As Integer = (1 + n - p) Mod (r * 8)
' compute the position and shift it so the first is (-r,-r) but (-r+1,-r)
' so square can connect
Dim row As Integer
Dim col As Integer
Select Case Math.Floor(a \ (r * 2))
' find the face : 0 top, 1 right, 2, bottom, 3 left
Case 0
row = a - r
col = -r
Case 1
row = r
col = (a Mod en) - r
Case 2
row = r - (a Mod en)
col = r
Case 3
row = -r
col = r - (a Mod en)
End Select
Return New RowCol(row, col)
End Function