Let’s say I have a NumPy array, a
:
a = np.array([
[1, 2, 3],
[2, 3, 4]
])
And I would like to add a column of ze
I find the following most elegant:
b = np.insert(a, 3, values=0, axis=1) # Insert values before column 3
An advantage of insert
is that it also allows you to insert columns (or rows) at other places inside the array. Also instead of inserting a single value you can easily insert a whole vector, for instance duplicate the last column:
b = np.insert(a, insert_index, values=a[:,2], axis=1)
Which leads to:
array([[1, 2, 3, 3],
[2, 3, 4, 4]])
For the timing, insert
might be slower than JoshAdel's solution:
In [1]: N = 10
In [2]: a = np.random.rand(N,N)
In [3]: %timeit b = np.hstack((a, np.zeros((a.shape[0], 1))))
100000 loops, best of 3: 7.5 µs per loop
In [4]: %timeit b = np.zeros((a.shape[0], a.shape[1]+1)); b[:,:-1] = a
100000 loops, best of 3: 2.17 µs per loop
In [5]: %timeit b = np.insert(a, 3, values=0, axis=1)
100000 loops, best of 3: 10.2 µs per loop