I\'m struggling to understand exactly how einsum
works. I\'ve looked at the documentation and a few examples, but it\'s not seeming to stick.
Here\'s an
Lets make 2 arrays, with different, but compatible dimensions to highlight their interplay
In [43]: A=np.arange(6).reshape(2,3)
Out[43]:
array([[0, 1, 2],
[3, 4, 5]])
In [44]: B=np.arange(12).reshape(3,4)
Out[44]:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
Your calculation, takes a 'dot' (sum of products) of a (2,3) with a (3,4) to produce a (4,2) array. i
is the 1st dim of A
, the last of C
; k
the last of B
, 1st of C
. j
is 'consumed' by the summation.
In [45]: C=np.einsum('ij,jk->ki',A,B)
Out[45]:
array([[20, 56],
[23, 68],
[26, 80],
[29, 92]])
This is the same as np.dot(A,B).T
- it's the final output that's transposed.
To see more of what happens to j
, change the C
subscripts to ijk
:
In [46]: np.einsum('ij,jk->ijk',A,B)
Out[46]:
array([[[ 0, 0, 0, 0],
[ 4, 5, 6, 7],
[16, 18, 20, 22]],
[[ 0, 3, 6, 9],
[16, 20, 24, 28],
[40, 45, 50, 55]]])
This can also be produced with:
A[:,:,None]*B[None,:,:]
That is, add a k
dimension to the end of A
, and an i
to the front of B
, resulting in a (2,3,4) array.
0 + 4 + 16 = 20
, 9 + 28 + 55 = 92
, etc; Sum on j
and transpose to get the earlier result:
np.sum(A[:,:,None] * B[None,:,:], axis=1).T
# C[k,i] = sum(j) A[i,j (,k) ] * B[(i,) j,k]