It\'s possible to create sources and sinks from actors using Source.actorPublisher()
and Sink.actorSubscriber()
methods respectively. But is it pos
Here is a solution build by using a graph stage. The actor has to acknowledge all messages in order to have back-pressure. The actor is notified when the stream fails/completes and the stream fails when the actor terminates. This can be useful if you don't want to use ask, e.g. when not every input message has a corresponding output message.
import akka.actor.{ActorRef, Status, Terminated}
import akka.stream._
import akka.stream.stage.{GraphStage, GraphStageLogic, InHandler, OutHandler}
object ActorRefBackpressureFlowStage {
case object StreamInit
case object StreamAck
case object StreamCompleted
case class StreamFailed(ex: Throwable)
case class StreamElementIn[A](element: A)
case class StreamElementOut[A](element: A)
}
/**
* Sends the elements of the stream to the given `ActorRef` that sends back back-pressure signal.
* First element is always `StreamInit`, then stream is waiting for acknowledgement message
* `ackMessage` from the given actor which means that it is ready to process
* elements. It also requires `ackMessage` message after each stream element
* to make backpressure work. Stream elements are wrapped inside `StreamElementIn(elem)` messages.
*
* The target actor can emit elements at any time by sending a `StreamElementOut(elem)` message, which will
* be emitted downstream when there is demand.
*
* If the target actor terminates the stage will fail with a WatchedActorTerminatedException.
* When the stream is completed successfully a `StreamCompleted` message
* will be sent to the destination actor.
* When the stream is completed with failure a `StreamFailed(ex)` message will be send to the destination actor.
*/
class ActorRefBackpressureFlowStage[In, Out](private val flowActor: ActorRef) extends GraphStage[FlowShape[In, Out]] {
import ActorRefBackpressureFlowStage._
val in: Inlet[In] = Inlet("ActorFlowIn")
val out: Outlet[Out] = Outlet("ActorFlowOut")
override def createLogic(inheritedAttributes: Attributes): GraphStageLogic = new GraphStageLogic(shape) {
private lazy val self = getStageActor {
case (_, StreamAck) =>
if(firstPullReceived) {
if (!isClosed(in) && !hasBeenPulled(in)) {
pull(in)
}
} else {
pullOnFirstPullReceived = true
}
case (_, StreamElementOut(elemOut)) =>
val elem = elemOut.asInstanceOf[Out]
emit(out, elem)
case (_, Terminated(targetRef)) =>
failStage(new WatchedActorTerminatedException("ActorRefBackpressureFlowStage", targetRef))
case (actorRef, unexpected) =>
failStage(new IllegalStateException(s"Unexpected message: `$unexpected` received from actor `$actorRef`."))
}
var firstPullReceived: Boolean = false
var pullOnFirstPullReceived: Boolean = false
override def preStart(): Unit = {
//initialize stage actor and watch flow actor.
self.watch(flowActor)
tellFlowActor(StreamInit)
}
setHandler(in, new InHandler {
override def onPush(): Unit = {
val elementIn = grab(in)
tellFlowActor(StreamElementIn(elementIn))
}
override def onUpstreamFailure(ex: Throwable): Unit = {
tellFlowActor(StreamFailed(ex))
super.onUpstreamFailure(ex)
}
override def onUpstreamFinish(): Unit = {
tellFlowActor(StreamCompleted)
super.onUpstreamFinish()
}
})
setHandler(out, new OutHandler {
override def onPull(): Unit = {
if(!firstPullReceived) {
firstPullReceived = true
if(pullOnFirstPullReceived) {
if (!isClosed(in) && !hasBeenPulled(in)) {
pull(in)
}
}
}
}
override def onDownstreamFinish(): Unit = {
tellFlowActor(StreamCompleted)
super.onDownstreamFinish()
}
})
private def tellFlowActor(message: Any): Unit = {
flowActor.tell(message, self.ref)
}
}
override def shape: FlowShape[In, Out] = FlowShape(in, out)
}