df2 = pd.DataFrame({\'X\' : [\'X1\', \'X1\', \'X1\', \'X1\'], \'Y\' : [\'Y2\',\'Y1\',\'Y1\',\'Y1\'], \'Z\' : [\'Z3\',\'Z1\',\'Z1\',\'Z2\']})
X Y Z
0 X1 Y2
Do you mean something like this?
In [39]: df2.pivot_table(values='X', rows='Y', cols='Z',
aggfunc=lambda x: len(x.unique()))
Out[39]:
Z Z1 Z2 Z3
Y
Y1 1 1 NaN
Y2 NaN NaN 1
Note that using len
assumes you don't have NA
s in your DataFrame. You can do x.value_counts().count()
or len(x.dropna().unique())
otherwise.