import pandas as pd
import numpy as np
import cv2
from torch.utils.data.dataset import Dataset
class CustomDatasetFromCSV(Dataset):
def __init__(self, csv_path,
Bear in mind that most canonical examples are already spited. For instance on this page you will find MNIST. One common belief is that is has 60.000 images. Bang! Wrong! It has 70.000 images out of that 60.000 training and 10.000 validation (test) images.
So for the canonical datasets the flavor of PyTorch is to provide you already spited datasets.
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset, TensorDataset
from torch.optim import *
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import os
import numpy as np
import random
bs=512
t = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=(0), std=(1))]
)
dl_train = DataLoader( torchvision.datasets.MNIST('/data/mnist', download=True, train=True, transform=t),
batch_size=bs, drop_last=True, shuffle=True)
dl_valid = DataLoader( torchvision.datasets.MNIST('/data/mnist', download=True, train=False, transform=t),
batch_size=bs, drop_last=True, shuffle=True)