Say I have a dictionary with 10 key-value pairs. Each entry holds a numpy array. However, the length of the array is not the same for all of them.
How can I create a
A way of tidying up your syntax, but still do essentially the same thing as these other answers, is below:
>>> mydict = {'one': [1,2,3], 2: [4,5,6,7], 3: 8}
>>> dict_df = pd.DataFrame({ key:pd.Series(value) for key, value in mydict.items() })
>>> dict_df
one 2 3
0 1.0 4 8.0
1 2.0 5 NaN
2 3.0 6 NaN
3 NaN 7 NaN
A similar syntax exists for lists, too:
>>> mylist = [ [1,2,3], [4,5], 6 ]
>>> list_df = pd.DataFrame([ pd.Series(value) for value in mylist ])
>>> list_df
0 1 2
0 1.0 2.0 3.0
1 4.0 5.0 NaN
2 6.0 NaN NaN
Another syntax for lists is:
>>> mylist = [ [1,2,3], [4,5], 6 ]
>>> list_df = pd.DataFrame({ i:pd.Series(value) for i, value in enumerate(mylist) })
>>> list_df
0 1 2
0 1 4.0 6.0
1 2 5.0 NaN
2 3 NaN NaN
You may additionally have to transpose the result and/or change the column data types (float, integer, etc).