how to plot and annotate hierarchical clustering dendrograms in scipy/matplotlib

后端 未结 2 2022
一向
一向 2020-12-07 09:05

I\'m using dendrogram from scipy to plot hierarchical clustering using matplotlib as follows:

mat = array([[1, 0.5, 0.         


        
2条回答
  •  星月不相逢
    2020-12-07 09:46

    I think there's a couple misunderstandings as to the use of the functions that you are trying to use. Here's a fully working code snippet to illustrate my points:

    import matplotlib.pyplot as plt
    from scipy.cluster.hierarchy import dendrogram, linkage
    from numpy import array
    import numpy as np
    
    
    mat = array([184, 222, 177, 216, 231,
                 45, 123, 128, 200,
                 129, 121, 203,
                 46, 83,
                 83])
    
    dist_mat = mat
    
    linkage_matrix = linkage(dist_mat, 'single')
    print linkage_matrix
    
    plt.figure(101)
    plt.subplot(1, 2, 1)
    plt.title("ascending")
    dendrogram(linkage_matrix,
               color_threshold=1,
               truncate_mode='lastp',
               labels=array(['a', 'b', 'c', 'd', 'e', 'f']),
               distance_sort='ascending')
    
    plt.subplot(1, 2, 2)
    plt.title("descending")
    dendrogram(linkage_matrix,
               color_threshold=1,
               truncate_mode='lastp',
               labels=array(['a', 'b', 'c', 'd', 'e', 'f']),
               distance_sort='descending')
    
    
    def make_fake_data():
        amp = 1000.
        x = []
        y = []
        for i in range(0, 10):
            s = 20
            x.append(np.random.normal(30, s))
            y.append(np.random.normal(30, s))
        for i in range(0, 20):
            s = 2
            x.append(np.random.normal(150, s))
            y.append(np.random.normal(150, s))
        for i in range(0, 10):
            s = 5
            x.append(np.random.normal(-20, s))
            y.append(np.random.normal(50, s))
    
        plt.figure(1)
        plt.title('fake data')
        plt.scatter(x, y)
    
        d = []
        for i in range(len(x) - 1):
            for j in range(i+1, len(x) - 1):
                d.append(np.sqrt(((x[i]-x[j])**2 + (y[i]-y[j])**2)))
        return d
    
    mat = make_fake_data()
    
    
    plt.figure(102)
    plt.title("Three Clusters")
    
    linkage_matrix = linkage(mat, 'single')
    print "three clusters"
    print linkage_matrix
    
    dendrogram(linkage_matrix,
               truncate_mode='lastp',
               color_threshold=1,
               show_leaf_counts=True)
    
    plt.show()
    

    First of all, the computation m -> m - 1 didn't really change your result since the distance matrix, which basically describes the relative distances between all unique pairs, didn't change in your specific case. (In my example code above, all distances are Euclidean so all are positive and consistent from points on a 2d plane.)

    For your second question, you probably need to roll out your own annotation routine to do what you want, since I don't think dendromgram natively supports it...

    For the last question, show_leaf_counts seems to work only when you try to display non-singleton leaf nodes with truncate_mode='lastp' option. Basically a leaves are bunched up so close together that they are not easy to see. So you have an option of just displaying a leaf but have an option of showing (in parenthesis) how many are bunched up in that leaf.

    Hope this helps.

提交回复
热议问题