I\'m trying to visualize some simple automatic physical systems (such things as pendulum, robot arms,etc.) in Haskell. Often those systems can be described by equations like
I'm going to list a couple of items in the Mono and .Net space and one from the Haskell space that I found not too long ago. I'll start with Haskell.
Its description as per its site:
Elm aims to make front-end web development more pleasant. It introduces a new approach to GUI programming that corrects the systemic problems of HTML, CSS, and JavaScript. Elm allows you to quickly and easily work with visual layout, use the canvas, manage complicated user input, and escape from callback hell.
It has its own variant of FRP. From playing with its examples it seems pretty mature.
Description from its front page:
The Reactive Extensions (Rx) is a library for composing asynchronous and event-based programs using observable sequences and LINQ-style query operators. Using Rx, developers represent asynchronous data streams with Observables, query asynchronous data streams using LINQ operators, and parameterize the concurrency in the asynchronous data streams using Schedulers. Simply put, Rx = Observables + LINQ + Schedulers.
Reactive Extensions comes from MSFT and implements many excellent operators that simplify handling events. It was open sourced just a couple of days ago. It's very mature and used in production; in my opinion it would have been a nicer API for the Windows 8 APIs than the TPL-library provides; because observables can be both hot and cold and retried/merged etc, while tasks always represent hot or done computations that are either running, faulted or completed.
I've written server-side code using Rx for asynchronocity, but I must admit that writing functionally in C# can be a bit annoying. F# has a couple of wrappers, but it's been hard to track the API development, because the group is relatively closed and isn't promoted by MSFT like other projects are.
Its open sourcing came with the open sourcing of its IL-to-JS compiler, so it could probably work well with JavaScript or Elm.
You could probably bind F#/C#/JS/Haskell together very nicely using a message broker, like RabbitMQ and SocksJS.
Description from its front page:
Bling is a C#-based library for easily programming images, animations, interactions, and visualizations on Microsoft's WPF/.NET. Bling is oriented towards design technologists, i.e., designers who sometimes program, to aid in the rapid prototyping of rich UI design ideas. Students, artists, researchers, and hobbyists will also find Bling useful as a tool for quickly expressing ideas or visualizations. Bling's APIs and constructs are optimized for the fast programming of throw away code as opposed to the careful programming of production code.
Complimentary LtU-article.
I've tested this, but not worked with it for a client project. It looks awesome, has nice C# operator overloading that form the bindings between values. It uses dependency properties in WPF/SL/(WinRT) as event sources. Its 3D animations work well on reasonable hardware. I would use this if I end up on a project in need for visualizations; probably porting it to Windows 8.
Paul Betts, previously at MSFT, now at Github, wrote that framework. I've worked with it pretty extensively and like the model. It's more decoupled than Blink (by its nature from using Rx and its abstractions) - making it easier to unit test code using it. The github git client for Windows is written in this.
The reactive model is performant enough for most performance-demanding applications. If you are thinking of hard real-time, I'd wager that most GC-languages have problems. Rx, ReactiveUI create some amount of small object that need to be GCed, because that's how subscriptions are created/disposed and intermediate values are progressed in the reactive "monad" of callbacks. In general on .Net I prefer reactive programming over task-based programming because callbacks are static (known at compile time, no allocation) while tasks are dynamically allocated (not known, all calls need an instance, garbage created) - and lambdas compile into compiler-generated classes.
Obviously C# and F# are strictly evaluated, so time-leak isn't a problem here. Same for JS. It can be a problem with replayable or cached observables though.