I found in many available neural network code implemented using TensorFlow that regularization terms are often implemented by manually adding an additional term to loss valu
tf.GraphKeys.REGULARIZATION_LOSSES will not be added automatically, but there is a simple way to add them:
reg_loss = tf.losses.get_regularization_loss()
total_loss = loss + reg_loss
tf.losses.get_regularization_loss() uses tf.add_n to sum the entries of tf.GraphKeys.REGULARIZATION_LOSSES element-wise. tf.GraphKeys.REGULARIZATION_LOSSES will typically be a list of scalars, calculated using regularizer functions. It gets entries from calls to tf.get_variable that have the regularizer parameter specified. You can also add to that collection manually. That would be useful when using tf.Variable and also when specifying activity regularizers or other custom regularizers. For instance:
#This will add an activity regularizer on y to the regloss collection
regularizer = tf.contrib.layers.l2_regularizer(0.1)
y = tf.nn.sigmoid(x)
act_reg = regularizer(y)
tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, act_reg)
(In this example it would presumably be more effective to regularize x, as y really flattens out for large x.)