I want to join two data sources, orders and customers:
orders is an SQL Server table:
orderid| customerid | orderdate | ordercost
------ | ----------
I think problem is columns customerid has different dtypes in both DataFrames so no match.
So need convert both columns to int or both to str.
df1['customerid'] = df1['customerid'].astype(int)
df2['customerid'] = df2['customerid'].astype(int)
Or:
df1['customerid'] = df1['customerid'].astype(str)
df2['customerid'] = df2['customerid'].astype(str)
Also is possible omit how='inner', because default value of merge:
merged= pd.merge( df1, df2, on= 'customerid')