I\'m working with a Spark dataframe which could be loading data from one of three different schema versions:
// Original
{ \"A\": {\"B\": 1 } }
// Addition \
JSON sources are not very well suited for data with evolving schema (how about Avro or Parquet instead) but the simple solution is to use the same schema for all sources and make new fields optional / nullable:
import org.apache.spark.sql.types.{StructType, StructField, LongType}
val schema = StructType(Seq(
StructField("A", StructType(Seq(
StructField("B", LongType, true),
StructField("D", LongType, true)
)), true),
StructField("C", LongType, true)))
You can pass schema like this to DataFrameReader:
val rddV1 = sc.parallelize(Seq("{ \"A\": {\"B\": 1 } }"))
val df1 = sqlContext.read.schema(schema).json(rddV1)
val rddV2 = sc.parallelize(Seq("{ \"A\": {\"B\": 1 }, \"C\": 2 }"))
val df2 = sqlContext.read.schema(schema).json(rddV2)
val rddV3 = sc.parallelize(Seq("{ \"A\": {\"B\": 1, \"D\": 3 }, \"C\": 2 }"))
val df3 = sqlContext.read.schema(schema).json(rddV3)
and you'll get a consistent structure independent of a variant:
require(df1.schema == df2.schema && df2.schema == df3.schema)
with missing columns automatically set to null:
df1.printSchema
// root
// |-- A: struct (nullable = true)
// | |-- B: long (nullable = true)
// | |-- D: long (nullable = true)
// |-- C: long (nullable = true)
df1.show
// +--------+----+
// | A| C|
// +--------+----+
// |[1,null]|null|
// +--------+----+
df2.show
// +--------+---+
// | A| C|
// +--------+---+
// |[1,null]| 2|
// +--------+---+
df3.show
// +-----+---+
// | A| C|
// +-----+---+
// |[1,3]| 2|
// +-----+---+
Note:
This solutions is data source dependent. It may or may not work with other sources, or even result in malformed records.