How to compute the inverse of a RowMatrix in Apache Spark?

前端 未结 3 1551
天涯浪人
天涯浪人 2020-12-06 18:41

I have a X, distributed matrix, in RowMatrix form. I am using Spark 1.3.0. I need to be able to calculate X inverse.

3条回答
  •  孤城傲影
    2020-12-06 19:32

    I had problems using this function with option

    conf.set("spark.sql.shuffle.partitions", "12")
    

    The rows in RowMatrix got shuffled.

    Here is an update that worked for me

    import org.apache.spark.mllib.linalg.{DenseMatrix,DenseVector}
    import org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix
    
    def computeInverse(X: IndexedRowMatrix)
    : DenseMatrix = 
    {
      val nCoef = X.numCols.toInt
      val svd = X.computeSVD(nCoef, computeU = true)
      if (svd.s.size < nCoef) {
        sys.error(s"IndexedRowMatrix.computeInverse called on singular matrix.")
      }
    
      // Create the inv diagonal matrix from S 
      val invS = DenseMatrix.diag(new DenseVector(svd.s.toArray.map(x => math.pow(x, -1))))
    
      // U cannot be a RowMatrix
      val U = svd.U.toBlockMatrix().toLocalMatrix().multiply(DenseMatrix.eye(svd.U.numRows().toInt)).transpose
    
      val V = svd.V
      (V.multiply(invS)).multiply(U)
    }
    

提交回复
热议问题