How to compute the inverse of a RowMatrix in Apache Spark?

前端 未结 3 1552
天涯浪人
天涯浪人 2020-12-06 18:41

I have a X, distributed matrix, in RowMatrix form. I am using Spark 1.3.0. I need to be able to calculate X inverse.

3条回答
  •  囚心锁ツ
    2020-12-06 19:22

    import org.apache.spark.mllib.linalg.{Vectors,Vector,Matrix,SingularValueDecomposition,DenseMatrix,DenseVector}
    import org.apache.spark.mllib.linalg.distributed.RowMatrix
    
    def computeInverse(X: RowMatrix): DenseMatrix = {
      val nCoef = X.numCols.toInt
      val svd = X.computeSVD(nCoef, computeU = true)
      if (svd.s.size < nCoef) {
        sys.error(s"RowMatrix.computeInverse called on singular matrix.")
      }
    
      // Create the inv diagonal matrix from S 
      val invS = DenseMatrix.diag(new DenseVector(svd.s.toArray.map(x => math.pow(x,-1))))
    
      // U cannot be a RowMatrix
      val U = new DenseMatrix(svd.U.numRows().toInt,svd.U.numCols().toInt,svd.U.rows.collect.flatMap(x => x.toArray))
    
      // If you could make V distributed, then this may be better. However its alreadly local...so maybe this is fine.
      val V = svd.V
      // inv(X) = V*inv(S)*transpose(U)  --- the U is already transposed.
      (V.multiply(invS)).multiply(U)
      }
    

提交回复
热议问题