How to filter numpy array by list of indices?

后端 未结 4 1079
清歌不尽
清歌不尽 2020-12-06 09:42

I have a numpy array, filtered__rows, comprised of LAS data [x, y, z, intensity, classification]. I have created a cKDTree of points

4条回答
  •  广开言路
    2020-12-06 10:05

    Using Docs: https://docs.scipy.org/doc/numpy-1.13.0/user/basics.indexing.html The following implementation should work for arbitrary number of dimensions/shapes for some numpy ndarray.

    First we need a multi-dimensional set of indexes and some example data:

    import numpy as np
    y = np.arange(35).reshape(5,7)
    print(y) 
    indexlist = [[0,1], [0,2], [3,3]]
    print ('indexlist:', indexlist)
    

    To actually extract the intuitive result the trick is to use a Transpose:

    indexlisttranspose = np.array(indexlist).T.tolist()
    print ('indexlist.T:', indexlisttranspose)
    print ('y[indexlist.T]:', y[ tuple(indexlisttranspose) ])
    

    Makes the following terminal output:

    y: [[ 0  1  2  3  4  5  6]
     [ 7  8  9 10 11 12 13]
     [14 15 16 17 18 19 20]
     [21 22 23 24 25 26 27]
     [28 29 30 31 32 33 34]]
    indexlist: [[0, 1], [0, 2], [3, 3]]
    indexlist.T: [[0, 0, 3], [1, 2, 3]]
    y[indexlist.T]: [ 1  2 24]
    

    The tuple... fixes a future warning which we can cause like so:

    print ('y[indexlist.T]:', y[ indexlisttranspose ])
    
    FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`.
    In the future this will be interpreted as an array index,
    `arr[np.array(seq)]`, which will result either in an error or a
    different result.
        print ('y[indexlist.T]:', y[ indexlisttranspose ])
    y[indexlist.T]: [ 1  2 24]
    

提交回复
热议问题