When should a double indirection be used in C? Can anyone explain with a example?
What I know is that a double indirection is a pointer to a pointer. Why would I ne
pointer1 = pointer2, you give pointer1 the address of pointer2.but! if you do that within a function, and you want the result to persist after the function is done, you need do some extra work. you need a new pointer3 just to point to pointer1. pass pointer3 to the function.
here is an example. look at the output below first, to understand.
#include
int main()
{
int c = 1;
int d = 2;
int e = 3;
int * a = &c;
int * b = &d;
int * f = &e;
int ** pp = &a; // pointer to pointer 'a'
printf("\n a's value: %x \n", a);
printf("\n b's value: %x \n", b);
printf("\n f's value: %x \n", f);
printf("\n can we change a?, lets see \n");
printf("\n a = b \n");
a = b;
printf("\n a's value is now: %x, same as 'b'... it seems we can, but can we do it in a function? lets see... \n", a);
printf("\n cant_change(a, f); \n");
cant_change(a, f);
printf("\n a's value is now: %x, Doh! same as 'b'... that function tricked us. \n", a);
printf("\n NOW! lets see if a pointer to a pointer solution can help us... remember that 'pp' point to 'a' \n");
printf("\n change(pp, f); \n");
change(pp, f);
printf("\n a's value is now: %x, YEAH! same as 'f'... that function ROCKS!!!. \n", a);
return 0;
}
void cant_change(int * x, int * z){
x = z;
printf("\n ----> value of 'a' is: %x inside function, same as 'f', BUT will it be the same outside of this function? lets see\n", x);
}
void change(int ** x, int * z){
*x = z;
printf("\n ----> value of 'a' is: %x inside function, same as 'f', BUT will it be the same outside of this function? lets see\n", *x);
}
Here is the output: (read this first)
a's value: bf94c204
b's value: bf94c208
f's value: bf94c20c
can we change a?, lets see
a = b
a's value is now: bf94c208, same as 'b'... it seems we can, but can we do it in a function? lets see...
cant_change(a, f);
----> value of 'a' is: bf94c20c inside function, same as 'f', BUT will it be the same outside of this function? lets see
a's value is now: bf94c208, Doh! same as 'b'... that function tricked us.
NOW! lets see if a pointer to a pointer solution can help us... remember that 'pp' point to 'a'
change(pp, f);
----> value of 'a' is: bf94c20c inside function, same as 'f', BUT will it be the same outside of this function? lets see
a's value is now: bf94c20c, YEAH! same as 'f'... that function ROCKS!!!.