OpenCV detect partial circle with noise

前端 未结 3 1292
长情又很酷
长情又很酷 2020-12-06 03:22

I have tried to use OpenCV HoughCircles and findContours to detect a circle however the circle isn\'t complete enough or there is too much noise in the algorithm for these a

3条回答
  •  孤街浪徒
    2020-12-06 04:07

    Here you go:

    I'm using my 2nd answer from Detect semi-circle in opencv and modify it a little. This version now detects the best found semi-circle (regarding completeness).

    But first I want to tell you why the accepted answer of link to Detect semi-circle in opencv stack overflow question does not work here (beside noise): You have only edges of the circle! as stated in that question, HoughCircle function computes the gradient internally, which does not work well for edgy images.

    But now how I do it:

    using this as input (your own median filtered image (I've just cropped it):

    enter image description here

    First I "normalize" the image. I just stretch values, that smallest val is 0 and biggest val is 255, leading to this result: (maybe some real contrast enhancement is better)

    enter image description here

    after that I compute the threshold of that image with some fixed threshold (you might need to edit that and find a way to choose the threshold dynamically! a better contrast enhancement might help there)

    enter image description here

    from this image, I use some simple RANSAC circle detection(very similar to my answer in the linked semi-circle detection question), giving you this result as a best semi-sircle:

    enter image description here

    and here's the code:

    int main()
    {
        //cv::Mat color = cv::imread("../inputData/semi_circle_contrast.png");
        cv::Mat color = cv::imread("../inputData/semi_circle_median.png");
        cv::Mat gray;
    
        // convert to grayscale
        cv::cvtColor(color, gray, CV_BGR2GRAY);
    
        // now map brightest pixel to 255 and smalles pixel val to 0. this is for easier finding of threshold
        double min, max;
        cv::minMaxLoc(gray,&min,&max);
        float sub = min;
        float mult = 255.0f/(float)(max-sub);
        cv::Mat normalized = gray - sub;
        normalized = mult * normalized;
        cv::imshow("normalized" , normalized);
        //--------------------------------
    
    
        // now compute threshold
        // TODO: this might ne a tricky task if noise differs...
        cv::Mat mask;
        //cv::threshold(input, mask, 0, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);
        cv::threshold(normalized, mask, 100, 255, CV_THRESH_BINARY);
    
    
    
        std::vector edgePositions;
        edgePositions = getPointPositions(mask);
    
        // create distance transform to efficiently evaluate distance to nearest edge
        cv::Mat dt;
        cv::distanceTransform(255-mask, dt,CV_DIST_L1, 3);
    
        //TODO: maybe seed random variable for real random numbers.
    
        unsigned int nIterations = 0;
    
        cv::Point2f bestCircleCenter;
        float bestCircleRadius;
        float bestCirclePercentage = 0;
        float minRadius = 50;   // TODO: ADJUST THIS PARAMETER TO YOUR NEEDS, otherwise smaller circles wont be detected or "small noise circles" will have a high percentage of completion
    
        //float minCirclePercentage = 0.2f;
        float minCirclePercentage = 0.05f;  // at least 5% of a circle must be present? maybe more...
    
        int maxNrOfIterations = edgePositions.size();   // TODO: adjust this parameter or include some real ransac criteria with inlier/outlier percentages to decide when to stop
    
        for(unsigned int its=0; its< maxNrOfIterations; ++its)
        {
            //RANSAC: randomly choose 3 point and create a circle:
            //TODO: choose randomly but more intelligent, 
            //so that it is more likely to choose three points of a circle. 
            //For example if there are many small circles, it is unlikely to randomly choose 3 points of the same circle.
            unsigned int idx1 = rand()%edgePositions.size();
            unsigned int idx2 = rand()%edgePositions.size();
            unsigned int idx3 = rand()%edgePositions.size();
    
            // we need 3 different samples:
            if(idx1 == idx2) continue;
            if(idx1 == idx3) continue;
            if(idx3 == idx2) continue;
    
            // create circle from 3 points:
            cv::Point2f center; float radius;
            getCircle(edgePositions[idx1],edgePositions[idx2],edgePositions[idx3],center,radius);
    
            // inlier set unused at the moment but could be used to approximate a (more robust) circle from alle inlier
            std::vector inlierSet;
    
            //verify or falsify the circle by inlier counting:
            float cPerc = verifyCircle(dt,center,radius, inlierSet);
    
            // update best circle information if necessary
            if(cPerc >= bestCirclePercentage)
                if(radius >= minRadius)
            {
                bestCirclePercentage = cPerc;
                bestCircleRadius = radius;
                bestCircleCenter = center;
            }
    
        }
    
        // draw if good circle was found
        if(bestCirclePercentage >= minCirclePercentage)
            if(bestCircleRadius >= minRadius);
            cv::circle(color, bestCircleCenter,bestCircleRadius, cv::Scalar(255,255,0),1);
    
    
            cv::imshow("output",color);
            cv::imshow("mask",mask);
            cv::waitKey(0);
    
            return 0;
        }
    

    with these helper functions:

    float verifyCircle(cv::Mat dt, cv::Point2f center, float radius, std::vector & inlierSet)
    {
     unsigned int counter = 0;
     unsigned int inlier = 0;
     float minInlierDist = 2.0f;
     float maxInlierDistMax = 100.0f;
     float maxInlierDist = radius/25.0f;
     if(maxInlierDistmaxInlierDistMax) maxInlierDist = maxInlierDistMax;
    
     // choose samples along the circle and count inlier percentage
     for(float t =0; t<2*3.14159265359f; t+= 0.05f)
     {
         counter++;
         float cX = radius*cos(t) + center.x;
         float cY = radius*sin(t) + center.y;
    
         if(cX < dt.cols)
         if(cX >= 0)
         if(cY < dt.rows)
         if(cY >= 0)
         if(dt.at(cY,cX) < maxInlierDist)
         {
            inlier++;
            inlierSet.push_back(cv::Point2f(cX,cY));
         }
     }
    
     return (float)inlier/float(counter);
    }
    
    
    inline void getCircle(cv::Point2f& p1,cv::Point2f& p2,cv::Point2f& p3, cv::Point2f& center, float& radius)
    {
      float x1 = p1.x;
      float x2 = p2.x;
      float x3 = p3.x;
    
      float y1 = p1.y;
      float y2 = p2.y;
      float y3 = p3.y;
    
      // PLEASE CHECK FOR TYPOS IN THE FORMULA :)
      center.x = (x1*x1+y1*y1)*(y2-y3) + (x2*x2+y2*y2)*(y3-y1) + (x3*x3+y3*y3)*(y1-y2);
      center.x /= ( 2*(x1*(y2-y3) - y1*(x2-x3) + x2*y3 - x3*y2) );
    
      center.y = (x1*x1 + y1*y1)*(x3-x2) + (x2*x2+y2*y2)*(x1-x3) + (x3*x3 + y3*y3)*(x2-x1);
      center.y /= ( 2*(x1*(y2-y3) - y1*(x2-x3) + x2*y3 - x3*y2) );
    
      radius = sqrt((center.x-x1)*(center.x-x1) + (center.y-y1)*(center.y-y1));
    }
    
    
    
    std::vector getPointPositions(cv::Mat binaryImage)
    {
     std::vector pointPositions;
    
     for(unsigned int y=0; y(y);
         for(unsigned int x=0; x 0) pointPositions.push_back(cv::Point2i(x,y));
             if(binaryImage.at(y,x) > 0) pointPositions.push_back(cv::Point2f(x,y));
         }
     }
    
     return pointPositions;
    }
    

    edit : one more thing: speed performance highly depends on maxNrOfIterations. If that matters you really should read about RANSAC an when to stop it. So you might be able to decide early that a found circle is the right one and dont need to test any other ones ;)

提交回复
热议问题