What, if any, is the performance difference between the following two loops?
for (Object o: objectArrayList) {
o.DoSomething();
}
and <
Accepted answer answers the question, apart from the exceptional case of ArrayList...
Since most developers rely on ArrayList(atleast I believe so)
So I am obligated to add the correct answer here.
Straight from the developer documentation:-
The enhanced for loop (also sometimes known as "for-each" loop) can be used for collections that implement the Iterable interface and for arrays. With collections, an iterator is allocated to make interface calls to hasNext() and next(). With an ArrayList, a hand-written counted loop is about 3x faster (with or without JIT), but for other collections the enhanced for loop syntax will be exactly equivalent to explicit iterator usage.
There are several alternatives for iterating through an array:
static class Foo {
int mSplat;
}
Foo[] mArray = ...
public void zero() {
int sum = 0;
for (int i = 0; i < mArray.length; ++i) {
sum += mArray[i].mSplat;
}
}
public void one() {
int sum = 0;
Foo[] localArray = mArray;
int len = localArray.length;
for (int i = 0; i < len; ++i) {
sum += localArray[i].mSplat;
}
}
public void two() {
int sum = 0;
for (Foo a : mArray) {
sum += a.mSplat;
}
}
zero() is slowest, because the JIT can't yet optimize away the cost of getting the array length once for every iteration through the loop.
one() is faster. It pulls everything out into local variables, avoiding the lookups. Only the array length offers a performance benefit.
two() is fastest for devices without a JIT, and indistinguishable from one() for devices with a JIT. It uses the enhanced for loop syntax introduced in version 1.5 of the Java programming language.
So, you should use the enhanced for loop by default, but consider a hand-written counted loop for performance-critical ArrayList iteration.