I\'ve got a sparse Matrix in R that\'s apparently too big for me to run as.matrix() on (though it\'s not super-huge either). The as.matrix()
You can do a very impressive bit of sparse SVD in R using random projection as described in http://arxiv.org/abs/0909.4061
Here is some sample code:
# computes first k singular values of A with corresponding singular vectors
incore_stoch_svd = function(A, k) {
p = 10 # may need a larger value here
n = dim(A)[1]
m = dim(A)[2]
# random projection of A
Y = (A %*% matrix(rnorm((k+p) * m), ncol=k+p))
# the left part of the decomposition works for A (approximately)
Q = qr.Q(qr(Y))
# taking that off gives us something small to decompose
B = t(Q) %*% A
# decomposing B gives us singular values and right vectors for A
s = svd(B)
U = Q %*% s$u
# and then we can put it all together for a complete result
return (list(u=U, v=s$v, d=s$d))
}