I\'m trying to parse through a csv file and extract the data from only specific columns.
Example csv:
ID | N
import csv
from collections import defaultdict
columns = defaultdict(list) # each value in each column is appended to a list
with open('file.txt') as f:
reader = csv.DictReader(f) # read rows into a dictionary format
for row in reader: # read a row as {column1: value1, column2: value2,...}
for (k,v) in row.items(): # go over each column name and value
columns[k].append(v) # append the value into the appropriate list
# based on column name k
print(columns['name'])
print(columns['phone'])
print(columns['street'])
With a file like
name,phone,street
Bob,0893,32 Silly
James,000,400 McHilly
Smithers,4442,23 Looped St.
Will output
>>>
['Bob', 'James', 'Smithers']
['0893', '000', '4442']
['32 Silly', '400 McHilly', '23 Looped St.']
Or alternatively if you want numerical indexing for the columns:
with open('file.txt') as f:
reader = csv.reader(f)
reader.next()
for row in reader:
for (i,v) in enumerate(row):
columns[i].append(v)
print(columns[0])
>>>
['Bob', 'James', 'Smithers']
To change the deliminator add delimiter=" " to the appropriate instantiation, i.e reader = csv.reader(f,delimiter=" ")