I\'m starting with input data like this
df1 = pandas.DataFrame( {
\"Name\" : [\"Alice\", \"Bob\", \"Mallory\", \"Mallory\", \"Bob\" , \"Mallory\"] ,
These solutions only partially worked for me because I was doing multiple aggregations. Here is a sample output of my grouped by that I wanted to convert to a dataframe:
Because I wanted more than the count provided by reset_index(), I wrote a manual method for converting the image above into a dataframe. I understand this is not the most pythonic/pandas way of doing this as it is quite verbose and explicit, but it was all I needed. Basically, use the reset_index() method explained above to start a "scaffolding" dataframe, then loop through the group pairings in the grouped dataframe, retrieve the indices, perform your calculations against the ungrouped dataframe, and set the value in your new aggregated dataframe.
df_grouped = df[['Salary Basis', 'Job Title', 'Hourly Rate', 'Male Count', 'Female Count']]
df_grouped = df_grouped.groupby(['Salary Basis', 'Job Title'], as_index=False)
# Grouped gives us the indices we want for each grouping
# We cannot convert a groupedby object back to a dataframe, so we need to do it manually
# Create a new dataframe to work against
df_aggregated = df_grouped.size().to_frame('Total Count').reset_index()
df_aggregated['Male Count'] = 0
df_aggregated['Female Count'] = 0
df_aggregated['Job Rate'] = 0
def manualAggregations(indices_array):
temp_df = df.iloc[indices_array]
return {
'Male Count': temp_df['Male Count'].sum(),
'Female Count': temp_df['Female Count'].sum(),
'Job Rate': temp_df['Hourly Rate'].max()
}
for name, group in df_grouped:
ix = df_grouped.indices[name]
calcDict = manualAggregations(ix)
for key in calcDict:
#Salary Basis, Job Title
columns = list(name)
df_aggregated.loc[(df_aggregated['Salary Basis'] == columns[0]) &
(df_aggregated['Job Title'] == columns[1]), key] = calcDict[key]
If a dictionary isn't your thing, the calculations could be applied inline in the for loop:
df_aggregated['Male Count'].loc[(df_aggregated['Salary Basis'] == columns[0]) &
(df_aggregated['Job Title'] == columns[1])] = df['Male Count'].iloc[ix].sum()